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Abstract

Empirical research on culture and institutions in economics often relies on cross-cultural

data to examine historical or contemporary variation in traits across ethnolinguistic groups.

We argue that this work has not adequately addressed the well-known problem of cultural

non-independence due to common ancestry and show how phylogenetic regression, along

with newly available global language trees, can be used to directly account for this issue.

Our analysis focuses on Murdock’s Ethnographic Atlas, a widely used database of preindus-

trial societies, with broader implications for any cross-cultural study. First, we show that

various economic, institutional, and cultural characteristics in the Atlas exhibit phylogenetic

signal – they tend to be more similar among societies with closer ancestral ties – highlighting

the non-independence of observations. Second, through simulations in a sample resembling

the Ethnographic Atlas, we demonstrate that phylogenetic correlation leads to severe inef-

ficiency of the standard OLS estimator compared to phylogenetic generalized least squares

(PGLS). Furthermore, although clustered standard errors partially mitigate the problem,

OLS estimation yields unacceptably high type I error rates, frequently detecting a statis-

tically significant relationship where none exists. Finally, we revisit some of the recently

published results in a phylogenetic regression framework. In many specifications, PGLS es-

timates differ markedly from their OLS counterparts, indicating a smaller magnitude and

weaker statistical significance of relevant coefficients.
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1 Introduction

In recent years, there has been a surge of empirical research on culture, institutions, and

long-run economic development (Gershman, 2017; Nunn, 2020; Lowes, 2023). This work

frequently relies on cross-cultural data to explore variation in relevant traits across “soci-

eties,” which are typically represented by ethnolinguistic groups. A critical issue in such

statistical analyses is the non-independence of observations due to shared ancestry and

cultural evolutionary history of human societies around the globe (Mace and Pagel, 1994).

We argue that this well-known problem has not been adequately addressed by economists

and advance the use of phylogenetic comparative methods (PCMs) as a direct and effective

approach to account for it.

PCMs are a set of techniques designed to explicitly incorporate phylogenetic trees,

representing ancestral relationships between units of observation, into statistical analy-

sis. Originally developed by evolutionary biologists for cross-species comparisons, PCMs

have since been adopted by anthropologists and applied in cross-cultural studies (Nunn,

2011). Despite their widespread use in evolutionary anthropology, PCMs have been largely

overlooked by economists working with similar datasets and facing the same empirical chal-

lenges. This paper aims to bridge the methodological gap between disciplines, offering a

guide for applying phylogenetic regression in a typical empirical setting and formally com-

paring its performance to standard approaches in economics.

Although our insights are relevant for any research employing cross-cultural data, we

focus on the Ethnographic Atlas (EA), a global sample of more than 1,200 preindustrial

societies that is widely used in economics (Murdock, 1967; Lowes, 2021). To approximate

the ancestral relationships between these societies, we leverage the newly available global

phylogenies of languages (Bouckaert et al., 2022). After constructing a matched dataset

– linking ethnographic information from the EA to the corresponding tips of the global

language trees – we conduct phylogenetic signal tests to measure the tendency of closely

related societies to share similar traits. Our findings show that all commonly examined eco-

nomic, institutional, and cultural characteristics exhibit a substantial phylogenetic signal,

consistent with non-independence of societies due to shared ancestry.

Next, we introduce phylogenetic regression, a key framework for analyzing associations

between variables when observations are phylogenetically correlated (Revell, 2010). In this

setting, the covariance matrix of the error terms is computed based on a given language

tree, capturing ancestral relationships between societies, and an assumed cultural evolu-

tionary process occurring along the branches of this tree. The resulting covariance matrix

typically includes non-zero off-diagonal elements, which reflect the non-independence of
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observations due to common ancestry, and can be used to obtain more accurate estimates

of regression parameters. Specifically, the phylogenetic generalized least squares (PGLS)

estimator reweights observations based on their phylogenetic relatedness (Symonds and

Blomberg, 2014).

We conduct a series of simulations to compare the performance of PGLS to the ordinary

least squares (OLS) estimator. Specifically, we use the matched sample of 1,184 societies

from the EA to repeatedly generate two variables arising from independent evolution of

two respective traits on global language trees. We then estimate the relationship between

these two variables, which are, by construction, unrelated to each other. Consistent with

basic econometric theory, we find that the non-independence of observations leads to severe

inefficiency of the OLS estimator, with its variance exceeding that of PGLS by more than

200 times in the bivariate regression model. Although controlling for continent, country,

and language fixed effects improves the efficiency of the OLS estimator, PGLS remains

more accurate in the vast majority of simulations.

Furthermore, in our simulations, OLS produces unacceptably high type I error rates,

incorrectly identifying a statistically significant association between two unrelated vari-

ables. In the simplest bivariate regression case, the error rate reaches an alarming 90%.

Clustering standard errors by continent, country, or language family – a common practice

in economics – helps to reduce this problem, but type I error rates remain elevated, ranging

from 21% to 69% depending on model specification and clustering category. In contrast,

PGLS consistently yields type I error rates near the nominal 5% level.

Informed by the simulation results, we revisit some of the recently published research.

Specifically, we reanalyze a variety of regression models from 10 papers that employ the EA

data, comparing OLS estimates to their PGLS counterparts. We detect a substantial phy-

logenetic signal in the error terms of most regressions, which persists even after including

control variables and various fixed effects. This highlights the importance of accounting

for phylogenetic correlation across model specifications. We find that PGLS estimates

tend to be substantially smaller in magnitude than OLS estimates, though this difference

diminishes after including spatial and language family fixed effects. PGLS estimation typ-

ically reduces the statistical significance of relationships compared to OLS specifications

with clustered standard errors. Overall, PGLS estimates are much more stable and less

sensitive to model specification than OLS, and they remain robust to alternative global

language phylogenies. The discrepancy between PGLS and OLS results remains, but is

somewhat smaller in studies focused on Africa compared to those using global samples.
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This paper builds a connection between empirical research on culture across disciplines

and contributes primarily to two strands of literature. First, we make a methodological

contribution to the growing body of work on culture and comparative development in

economics. While economists spearheaded many innovations in addressing causal iden-

tification and other statistical challenges, the issue of non-independence due to common

ancestry has largely escaped their attention. Attempts to account for it in regression

analyses have mostly been limited to clustering standard errors by language family or in-

troducing fixed effects to capture cultural relatedness. We argue that these approaches

are conceptually inadequate and demonstrate through simulations that they cannot fully

address the issue. Instead, we advocate for the use of PCMs, which, to the best of our

knowledge, have not been adopted by economists yet, with the likely sole exception of our

recent study on headhunting in Austronesia (Gershman and Mumladze, 2024).

It is particularly surprising that the issue of cultural non-independence has been over-

looked, given the vibrant research on ancestry, cultural proximity, and diversity in this

field (Spolaore and Wacziarg, 2016; Ginsburgh and Weber, 2020). By contrast, substantial

research has been conducted on the problem of spatial non-independence (Conley, 2010;

Conley and Kelly, 2024), and statistical adjustments for spatial correlation have become

routine in empirical applications. We argue that research employing cross-cultural data

should adopt similarly rigorous strategies to account for phylogenetic correlation.

A recent paper by Claessens et al. (2023) highlights both spatial and cultural non-

independence in cross-country studies, demonstrating that many findings in this litera-

ture, including those by economist, are not robust when controlling for these dependencies

using global proximity matrices. While this paper is conceptually aligned with ours, its

exclusive focus on countries is methodologically limiting. Since countries are typically mul-

tiethnic and multilingual entities, they cannot be uniquely mapped onto language trees,

which makes PCMs – specifically designed to model cultural dynamics on phylogenies –

not properly applicable. Additionally, since country borders are often endogenous and

causal identification with cross-country data is generally problematic, economists have in-

creasingly employed more disaggregated units of analysis, such as ethnic groups and their

homelands (Michalopoulos and Papaioannou, 2018). Our focus on societies rather than

countries is in line with this recent trend in the literature and enables a proper application

of phylogenetic regression and related methods.

Second, we both draw from and contribute to the extensive literature in evolutionary

anthropology and related fields that employs PCMs to study cultural evolution (Mace and

Zhang, 2023). As pioneers in cross-cultural studies, anthropologists have been acutely
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aware of the phylogenetic non-independence problem for over a century and have led the

adoption of methods from evolutionary biology to address it. Most recent research in

this area has focused on societies representing specific language clusters, such as the Aus-

tronesian, Bantu, or Indo-European families, for which reliable phylogenies are available.

Due to the challenge of constructing a comprehensive tree of world languages, global-scale

studies have been rare and mostly limited to small samples of societies (Ringen et al.,

2019; Surowiec et al., 2019; Šaffa et al., 2022). We extend the scope of analysis by using

the newly available global language trees and the EA to create a large matched dataset

suitable for many applications. Rather than focusing on a specific research question, we

examine multiple societal characteristics and revisit some of the published research within

a phylogenetic regression framework. Furthermore, inspired by the approach common in

the evolutionary biology literature, we conduct a series of simulations to emphasize the

importance of accounting for phylogenetic non-independence specifically in this commonly

used global sample of societies.

The remainder of this paper is organized as follows. Section 2 briefly discusses the issue

of non-independence due to shared ancestry. Section 3 provides a detailed description of

the data used in our study. Section 4 introduces phylogenetic signal tests and applies them

to the EA data. Section 5 sets up the phylogenetic regression framework and presents our

simulation exercise. Section 6 revisits a selection of published results after accounting for

phylogenetic non-independence of observations. Section 7 concludes.

2 Non-independence due to shared ancestry

The non-independence of human societies as units of observation, along with the result-

ing statistical challenges in cross-cultural research, has long been recognized in the social

sciences. In one of the earliest quantitative studies of its kind, Tylor (1889) examined

correlations between various customs related to the “laws of marriage and descent” by

tabulating ethnographic data from several hundred societies around the world. Although

this was a pioneering work in its own right, it gained additional prominence due to a brief

but influential comment by Francis Galton, then president of the Royal Anthropological

Institute of Great Britain and Ireland, in response to Tylor’s presentation. The relevant

part of Galton’s remarks, published in the discussion section following the main article, is

as follows:

It was extremely desirable for the sake of those who may wish to study the

evidence for Dr. Tylor’s conclusions, that full information should be given as
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to the degree in which the customs of the tribes and races which are compared

together are independent. It might be, that some of the tribes had derived them

from a common source, so that they were duplicate copies of the same original.

Certainly, in such an investigation as this, each of the observations ought, in

the language of statisticians, to be carefully “weighted.”

In a single paragraph, Galton raised the issue of non-independence, suggesting that a

“common source” might give rise to similar bundles of traits across different societies, and

proposed weighting observations as a potential solution. Since the original comment may

be interpreted in terms of both spatial diffusion and inheritance from a common ancestor,

the term “Galton’s problem” usually refers to challenges involving both spatial and phy-

logenetic dependence in cross-cultural data. However, our primary focus throughout this

paper is on the latter.

Despite its long history, it took about a century to develop formal statistical tools to

address this issue. The first approach sought to reduce non-independence of observations by

sampling societies that were not closely related, focusing on groups from distinct language

families and geographic regions. The most well-known example of this strategy is the

Standard Cross-Cultural Sample (SCCS) of Murdock and White (1969), a subsample of 186

societies selected from the EA to maximize cultural independence. One obvious drawback

of this approach is the loss of information resulting from the radical reduction in sample

size, even if some of the excluded data points are, in Galton’s terms, “copies of the same

original.” More critically, since all human societies are related to some extent, subsampling

alone cannot fully resolve the problem, and observed similarities across language clusters

may still reflect shared ancestry (Eff, 2004; Mace and Zhang, 2023).

The second approach to addressing Galton’s problem emerged in anthropology during

the 1980s, drawing inspiration from spatial autoregressive (SAR) models developed earlier

by geographers (Dow et al., 1984). In this framework, cultural non-independence was for-

malized as a network autocorrelation issue and modeled through “interaction” matrices.

Unlike in cases of purely spatial correlation, the proposed matrices incorporated weights

based on both geographic and linguistic proximity, with the latter capturing shared ances-

try. These matrices were then used to define an autoregressive process in the error term

and integrated into the estimation procedure following standard SAR models. Although

this approach gained some traction in the literature, it was criticized for using arbitrary

weights matrices not grounded in a well-specified evolutionary process (Rohlf, 2001), sim-

ilar to how SAR models were criticized for lacking clear interpretation and structural

foundation (Conley, 2010).
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A more principled approach to Galton’s problem was developed through close collabo-

ration between anthropologists and evolutionary biologists. Given the process of biological

evolution and speciation, the issue of non-independence due to common ancestry is partic-

ularly significant in cross-species analysis: the co-occurrence of multiple traits across taxa

may reflect inheritance rather than a functional relationships between them. A watershed

moment in evolutionary biology came with the seminal paper by Felsenstein (1985), who

developed the method of phylogenetically independent contrasts to address this issue. His

approach combined phylogenetic trees as formal representations of ancestral relationships

among species with explicit models of trait evolution along the branches of such trees. This

contribution spurred a rapid development of other phylogenetic comparative methods, in-

cluding specialized regression techniques, which rely on trees and evolutionary models to

account for interdependence of species in statistical analyses and infer patterns of trait

coevolution (Harvey and Pagel, 1991; Harmon, 2019).

Drawing on the parallels between biological and cultural evolution, Mace and Pagel

(1994) proposed the use of phylogenetic comparative methods in cross-cultural studies,

sparking a new wave of research in quantitative anthropology (Gray and Watts, 2017;

Mace and Zhang, 2023). This approach replaces phylogenetic trees – tracing relationships

between biological organisms based primarily on molecular data – with linguistic trees that

map ancestral relationships between human societies. Trait evolution is then modeled as

occurring along the branches of these linguistic trees, ultimately producing the observed

distribution of trait values at the tips representing contemporary societies.1 This combi-

nation of tree structure and assumed evolutionary process can be used to estimate how

similar trait values are expected to be across societies, providing information to account

for phylogenetic non-independence in regression or other analyses.

Figure 1 illustrates the basic idea behind this approach. It displays the distribution of

two binary traits, Y and X, in a sample of six societies labeled from 1 to 6 and arranged

at the tips of two linguistic trees. In this example, both traits are present in societies 4,

5, and 6, absent in society 1, and only one trait is present in societies 2 and 3. While the

sample size of six is too small to make reliable inference regarding the correlation between

these traits, the raw data suggest a tendency toward co-occurrence, as seen in 4 out of 6

societies.

However, this tentative evidence looks different when considering the ancestral relation-

ships between societies. Panel (a) of the figure presents a realistic scenario where societies

exhibit varying degrees of relatedness, as reflected in the structure of the linguistic tree,

1See appendix B for a glossary of terms related to phylogenetic trees and used throughout the paper.
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Figure 1: Trait distribution and ancestral relationships among six societies.

Notes: Societies are labeled from 1 to 6. Shaded cells indicate the presence of binary traits Y and X in
respective societies. Panel (a) represents a realistic case, where observations are non-independent due to
varying degrees of phylogenetic relatedness as captured by the linguistic tree. R marks the root of the
tree, N1 and N2 are internal nodes corresponding to the MRCAs of societies 4, 5, 6 and 1, 2, respectively.
Panel (b) represents an extreme case of complete phylogenetic independence, where ancestral relationships
are captured by a star phylogeny.

with branch lengths representing the passage of time. In this case, societies 4, 5, and 6

are close relatives, having shared a common ancestor relatively recently at node N1. Con-

versely, all three are only distant relatives of societies 1, 2, and 3, as their most recent

common ancestor (MRCA) is located at the root of the tree, R. Societies 1 and 2, sharing

their MRCA at node N2, are more closely related than societies 1 and 6, but not as closely

as 4 and 6, since node N1 is much younger than N2.

With this information on shared ancestry supplementing the raw data on trait distribu-

tion, Galton’s problem becomes evident: the co-occurrence of traits Y and X in societies 4,

5, and 6 may well be due to the inheritance of this bundle from their MRCA at N1 and its

persistence, rather than any functional relationship between Y and X. The corresponding

observations do not represent three independent bits of information. In contrast, societies

2 and 3, where Y and X do not co-occur, have evolved independently for a longer period

and are less likely to share an ancestral trait bundle. From this perspective, the apparent

support for the co-occurrence hypothesis in the raw data diminishes. As Galton suggested,

observations should be reweighted to account for their non-independence, which is pre-

cisely what the phylogenetic regression approach accomplishes. Specifically, as explained
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in section 4, optimal weights are derived from a covariance matrix based on the relevant

language tree and the assumed evolutionary process.

Panel (b) of figure 1 illustrates an extreme scenario in which observations are completely

phylogenetically independent. While the trait distribution remains the same, the ancestral

relationships between societies are represented by a star phylogeny: all lineages diverge at

the root of the tree and evolve entirely independently throughout the evolutionary period.

Because all societies are equally unrelated to one another, no weights are needed to account

for shared ancestry, making the evidence in favor of the co-occurrence hypothesis stronger

than in the case presented in panel (a). However, since all human societies are related to

varying degrees, the tree depicted in panel (b) is not realistic.

Despite the many similarities between biological and cultural evolution (Mace and

Holden, 2005), there are also important distinctions that may pose challenges for the

application of PCMs in the social sciences. In particular, the assumed primacy of vertical

cultural transmission, occurring along the branches of linguistic trees, has been widely

debated in the literature. While horizontal transmission of traits is rare in biological

evolution, it is much more common in the context of culture, though its relative importance

likely varies by trait (Mace and Zhang, 2023). When horizontal transmission occurs across

branches of a language tree, it no longer provides a fully accurate representation of all

relevant historical relationships between societies (Nunn, 2011).

The extent to which horizontal cultural transmission undermines the validity of PCMs

has been explored in several simulation studies.2 Nunn et al. (2006) developed a model

that allows for two modes of transmission, assuming that horizontal transfers applied to

both modeled traits simultaneously. Their simulations revealed that, in this setting, PCMs

exhibited elevated type I error rates, comparable to those in standard regression analysis.

However, subsequent research argued that the assumption of paired horizontal transmission

was overly restrictive, showing that PCMs are substantially more robust and outperform

non-phylogenetic approaches in more realistic scenarios where traits may only be borrowed

one at a time (Currie et al., 2010). The debate continues, with new methods being ex-

plored in both evolutionary biology and anthropology to simultaneously model vertical and

horizontal transmission of traits in phylogenetic networks with reticulations (Gray et al.,

2010; Bastide et al., 2018).

2A related issue is the impact of horizontal transmission on the accuracy of linguistic trees reconstructed
from data such as language vocabularies. Simulations by Greenhill et al. (2009) have shown that Bayesian
phylogenetic methods are robust to realistic levels of borrowing between languages when reconstructing
tree topologies, although they are slightly more sensitive when estimating lineage divergence dates.
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As the preceding discussion makes clear, the issue of non-independence due to shared

ancestry has been central in anthropology, with various approaches proposed to address it.

In contrast, economists working with cross-cultural datasets and facing similar statistical

challenges have lagged behind, primarily focusing on spatial correlation. Apart from occa-

sional use of the phylogenetic version of the SAR model (Gershman, 2015), the predominant

approach to addressing phylogenetic non-independence has been to cluster standard errors

in regression models. This method allows for an arbitrary form of interdependence among

the errors terms within specific categories of societies. In practice, these categories are

based either on spatial units, such as continents and countries, or on language groupings

borrowed from classifications of societies available in the EA.

Although clustering standard errors is a step in the right direction, it does not fully

address the issue, as we formally demonstrate through simulations in section 5. The fun-

damental problem, as discussed earlier, is that all human societies share common ancestry

and essentially represent a single large cluster. The imposition of strict and somewhat ar-

bitrary categories, such as continent, country, or language family, eliminates cross-cluster

correlations – an implausible assumption, particularly if the resulting clusters are small in

size. On the other hand, increasing cluster size would necessarily reduce the number of

clusters, which poses a threat to statistical inference (Cameron and Miller, 2015). More-

over, cluster-robust inference becomes unreliable when cluster sizes are highly variable,

especially in the presence of a few unusually large clusters (MacKinnon et al., 2023). This

is particularly relevant when clustering by language family since the resulting groups vary

dramatically in size, both in general and in specific datasets such as the EA, as shown in

section 3.

Another issue with cluster-robust inference is that it does not leverage the correlation

structure within clusters, even though it could potentially improve the efficiency of estima-

tion. Generally, clustering only affects standard errors, while point estimates remain un-

changed. In contrast, the phylogenetic regression approach utilizes information about the

ancestral relationships between societies contained in the language tree. When combined

with a specified evolutionary process, this information allows to estimate the covariance

matrix of the error terms and obtain more precise coefficient estimates via phylogenetic

generalized least squares.
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3 Data

3.1 The Ethnographic Atlas

Although the challenge of accounting for shared ancestry is present in any cross-cultural set-

ting, we limit our analysis to the Ethnographic Atlas (Murdock, 1967). The EA is a global

ethnographic dataset that contains detailed information on more than 1,200 preindustrial

societies worldwide. Its primary sources reflect fieldwork conducted mostly between the

mid-19th and mid-20th centuries. We utilize the version of the EA available through D-

PLACE, a publicly accessible database of cultural, linguistic, and environmental diversity

(Kirby et al., 2016). The EA contains approximately 100 variables describing basic eco-

nomic activities, social organization, institutional arrangements, and cultural practices and

beliefs, typically coded on categorical or ordinal scales.

With the rise of empirical work on culture, institutions, and long-run economic devel-

opment in the past two decades, the EA has become a key data source for economists

working on these topics (Lowes, 2021). Some of this research uses the EA to explain

variation in historical characteristics, often by linking them to exogenous environmental

features. Other studies leverage EA data to explore the role of deep-rooted factors in ex-

plaining contemporary outcomes such as economic activity, conflict intensity, and cultural

values. While the EA faced criticism for containing significant measurement error, recent

analysis linking EA variables to analogous measures in contemporary societies has found

strong positive correlations (Bahrami-Rad et al., 2021). This validation exercise supports

the reliability of the EA as a source of ethnographic information.

Most empirical analyses use the EA variables “as is,” though they are sometimes com-

bined into composite indices to capture complex social traits such as kinship ties (Enke,

2019; Schulz et al., 2019) and gender inequality norms (Guarnieri and Tur-Prats, 2023).

Scholars have also combined the EA with data on population distribution by ethnicity to

construct country-level measures of ancestral characteristics of modern societies (Alesina et

al., 2013; Giuliano and Nunn, 2018). While our analysis focuses on a subset of commonly

used EA variables, the overall approach is readily applicable to any selection of traits and

societies.

An obvious benefit of the EA is its size and global scale. However, a consequence of

such extensive coverage is that many societies in this dataset are closely related, posing

challenges for statistical inference. As mentioned in the previous section, in the economics

literature employing the EA, the most common approach to account for non-independence

due to shared ancestry is through clustered standard errors. The EA offers several “lin-
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guistic affiliation” categories – namely language continent, family, and subfamily – that

have been used for this purpose. While a meaningful improvement, clustering does not

fully address the underlying issue, and a more comprehensive accounting of ancestral re-

lationships between societies can be achieved through a direct application of PCMs. To

make such an analysis feasible, it is necessary to combine the EA with a global phylogeny

of languages.

3.2 Global language trees

Building a tree representing ancestral relationships among all world languages is a highly

challenging task that has long been a central goal of comparative linguistics. We utilize

state-of-the-art estimates of global language supertrees recently produced by Bouckaert

et al. (2022). The authors apply Bayesian phylogenetic inference techniques to generate

global time-calibrated phylogenies for 6,635 extant languages. Their approach integrates

multiple sources of information which fall into five main categories.3

First, the authors use the Glottolog 4.0 database (Hammarström et al., 2019) to classify

all languages into primary families (or designate them as isolates) and obtain the rough

structure of their relationships within families. The search of the tree space is then con-

strained only to phylogenies consistent with these established classifications. Although

Glottolog provides a “skeleton” for further analysis, it does not specify the relationships

between language families or isolates, nor does it offer a fully resolved and dated branching

structure within families. Second, language location information, combined with a phy-

logeographic model, provides another input for establishing likely relationships between

families and languages. Third, historical, linguistic, and archaeological evidence is used to

date the breakup of major families and sub-clades. Fourth, the authors integrate results

from previous Bayesian analyses that provide posterior distributions of dated phylogenies

for nine language groups derived from lexical data.4 Finally, genetic and archaeological ev-

idence on human migration out of Africa is used to date the deepest relationships between

languages.

Importantly, rather than providing a single estimate for a global tree of languages,

Bouckaert et al. (2022) present a range of possibilities reflecting a substantial degree of

uncertainty present in their model and priors. Specifically, the posterior sample from

their Bayesian analysis includes 902 likely supertrees. Each of these trees is rooted, time-

3See the original paper for details on assumptions and modeling techniques.
4These include the Austronesian, Bantu, Dravidian, Indo-European, Pama-Nyungan, Semitic, Sino-

Tibetan, Turkic, and Uralic families or subfamilies.
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calibrated, ultrametric, and bifurcating (meaning that each internal node gives rise to

exactly two descendants). Across this sample, the tree height (or crown age) ranges from

75,000 to 120,000 years. Most language diversification events are estimated to be relatively

recent, with more than 95% of all language splits occurring within the last 5,000 years. The

majority of extant languages are relatively young and 95% are estimated to be less than

3,039 years old. These patterns generally align with the profound impact of agricultural

expansions during the Holocene on global linguistic diversity.

We account for phylogenetic uncertainty by conducting our analyses for each tree in

the posterior sample, thereby directly exploring the robustness of our results to different

tree estimates. Alternatively, often for illustration purposes, scholars rely on representative

summary trees derived from the entire posterior sample of candidates. A common choice

is the maximum clade credibility (MCC) summary tree which contains the most frequently

occurring clades (Heled and Bouckaert, 2013).

Overall, this newly available dataset improves upon recent attempts to build global

phylogenies of languages and societies (Jäger, 2018; Duda and Zrzavý, 2019) in several

ways, including the integration of multiple relevant data sources, extensive coverage of

languages, and direct accounting for phylogenetic uncertainty. Importantly, the authors

highlight the suitability of their phylogenies for cross-cultural research employing PCMs

(Bouckaert et al., 2022).

3.3 Matching EA societies to the global language trees

To begin using the EA data in conjunction with the global phylogenies described above,

each society in the Atlas must be matched to its corresponding language. This mapping is

facilitated by the fact that both D-PLACE and Bouckaert et al. (2022) use glottocodes –

unique identifiers from the Glottolog database – to categorize each EA society and language,

respectively.

During the matching process, we lost 87 of the 1,291 EA societies because they were

matched to languages that are now extinct, and thus excluded by Bouckaert et al. (2022).

Another 7 societies were dropped because they correspond to languages classified as colo-

nial, creole, pidgin, or mixed and also excluded from the global phylogenies. A further 13

societies were discarded because they could not be reliably matched to any glottocode cov-

ered in the global supertrees. The remaining 1,184 cases include 954 one-to-one glottocode-

based matches and 230 societies that speak different dialects of 80 unique languages. These
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Figure 2: Modifying a language tree to accommodate dialects.

Notes: The left panel shows the original tree, where three societies (3, 4, and 5) that speak dialects of
the same language are all matched to a single tree tip. The right panel displays the modified tree, with
a new node added to represent the MRCA of the three dialects. This node forms a polytomy, branching
into three separate tips, each corresponding to a different society on the modified language tree.

dialects are not assigned distinct glottocodes in the global language tree and are therefore

represented by a single tree tip.5

The application of PCMs requires that each observation corresponds to a unique tip

of the language tree. For the 230 relevant cases, rather than arbitrarily selecting one

society for each group of related dialects, we preserved all EA observations by slightly

modifying the global language trees. Specifically, for each set of dialects matching the

same glottocode, we created a new internal node that branches into multiple dialects, each

represented by a separate tree tip. Since there is no precise information on divergence times

between dialects of the same language, the age of each new node (the hypothesized MRCA

of the dialects) was determined as follows. First, for each tree in the available sample, we

computed the minimum age among MRCAs for each pair of distinct languages. We then

assumed that the age of the MRCAs for each group of dialects was equal to 10% of that

value, reflecting the idea that dialects diverged much more recently than any two distinct

languages. Cases with more than two dialects per glottocode resulted in polytomies, that

is, nodes giving rise to more than two branches simultaneously.

Our approach is illustrated in figure 2. The left panel shows the initial matching of

six societies to the tree tips. Societies 1, 2, and 6 are each matched to distinct languages,

while societies 3, 4, and 5 speak dialects of the same language and are all matched to the

5Approximately half of these observations (108 in total) form pairs of dialects. Another 90 societies
form groups of 3 to 9 dialects of the same language. The two outliers are Ute-Southern Paiute (glottocode
utes1238), whose dialects are spoken by 15 EA societies, and Shoshoni (glottocode shos1248), whose
dialects are spoken by 17 societies. Both belong to the North American branch of the Uto-Aztecan
language family.
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same tree trip. The right panel displays the modified tree, where an additional node is

created to represent the MRCA of the three dialects spoken by societies 3, 4, and 5. This

node forms a polytomy, with three branches leading to separate tips, each corresponding

to a different society on the modified language tree.

Our final matched sample of EA societies includes 1,184 observations. Their corre-

sponding languages belong to 126 primary families, based on Glottolog 4.0 classification,

with 64 of these families represented by only a single society. The five largest language

families in our sample are Atlantic-Congo (310 societies), Austronesian (130), Afro-Asiatic

(101), Uto-Aztecan (59), and Indo-European (46). Additionally, 23 societies were matched

to language isolates that do not belong to any family. We use this matched sample as an

input for various analyses in the remainder of the paper.

As part of any preliminary investigation, the relevant society-level data can be visualized

at the tips of a language tree. For example, figure 3 illustrates the distribution of two

binary characteristics, state centralization and beliefs in moralizing high gods, in a sample

of Austronesian societies from the EA, arranged at the tips of a pruned MCC tree. A simple

visual inspection suggests that the distribution of both traits is not random with respect

to the phylogeny. For instance, consider the clade of Polynesian societies located at the

top of the tree. According to the MCC tree, all languages in this group are close relatives

that share a MRCA between 1,000 and 2,000 years ago. Nearly all Polynesian societies,

with one exception, exhibit the same bundle of traits: centralized states are present, but

beliefs in moralizing high gods are absent.

More generally, the tendency of closely related societies to exhibit similar trait val-

ues is referred to as phylogenetic signal (Blomberg et al., 2003), which reflects the non-

independence of observations due to shared ancestry. While a graphical representation of

data on a language tree can be informative, the presence of phylogenetic signal should be

assessed through formal statistical tests.

4 Phylogenetic signal in the Ethnographic Atlas

A variety of tests can be used to detect and quantify phylogenetic signal in observed traits

(Münkemüller et al., 2012). Some of these tests, such as adaptations of Moran’s I statistic

(Gittleman and Kot, 1990; Abouheif, 1999), rely solely on the measurement of phylogenetic

proximities based on tree estimates and are not benchmarked to any particular model of

evolution. However, the most commonly used tests are conducted with reference to the

strength of phylogenetic signal under Brownian motion (BM), the basic evolutionary model
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Figure 3: State centralization and moralizing high gods in Austronesia.

Notes: The tree is derived by extracting the portion corresponding to Austronesian societies in the EA from
the global MCC tree of Bouckaert et al. (2022). Society names are listed at the tips. Shaded cells indicate
the presence of state centralization (C), defined as the existence of one or more levels of jurisdictional
hierarchy beyond the local community, and beliefs in moralizing high gods (H) in respective societies. The
horizontal axis represents time measured in years before present.

widely employed across applications. Given the fundamental importance of BM in PCMs,

we begin by briefly introducing this model and summarizing its main properties. We then

describe two standard phylogenetic signal tests for continuous and binary traits and apply

them to the EA data.
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4.1 Brownian motion on a phylogenetic tree

The Brownian motion (BM) model of trait evolution is a continuous-time random walk

process in which instantaneous changes in trait values are drawn from a normal distribution

with mean 0 and variance σ2 (Felsenstein, 1973). Under BM, variance accumulates linearly

over time, so after t units of time since the start of an evolutionary process, the trait value

is normally distributed with variance σ2t.

When modeling BM on a phylogenetic tree, one needs to account for occasional popu-

lation splits that ultimately give rise to new societies. At the time of each split, the two

daughter populations have identical trait values, but from that point forward, the trait

evolves independently in each population according to the BM process. Consistent with

its basic definition, BM on a phylogeny has the following characteristics: 1) trait changes

along any given tree branch are independent of both previous evolutionary history and

changes on any other branches; 2) larger changes are more likely on longer branches, with

variance of change proportional to branch length; 3) the rate of evolution (σ2) is constant

over time, regardless of proximity to extant societies at the tips of the tree (Nunn, 2011).

More formally, consider an ultrametric phylogenetic tree of height t with n tips (soci-

eties) indexed by i = 1, . . . , n. Denote the total number of branches connecting the tree

root to tip i as Ti, and the length of each branch on this path as tij, j = 1, . . . , Ti. If trait

y evolves on this phylogeny according to the BM process with a constant evolutionary rate

σ2, then

yi = α +

Ti∑
j=1

νij.

Here, α is the (ancestral) state of trait y at the root and νij ∼ N (0, σ2tij) are independent

value changes experienced at each tree branch. It follows, in particular, that yi ∼ N (α, σ2t)

since
∑Ti

j=1 tij = t for all i in an ultrametric tree.

In a hypothetical case where all lineages diverge immediately at the tree root, meaning

societies evolve completely independently throughout their entire history, the joint distri-

bution of trait values is a multivariate normal such that y ∼ N (α · ı, σ2t · I), where y is an

n× 1 vector of trait values across societies, ı is an n× 1 vector of ones, and I is an n× n

identity matrix. In a more realistic scenario, where societies share common ancestry and

their paths from the tree root to the tips partly overlap, the variance-covariance matrix of

y is no longer diagonal. Indeed, if two societies share a most recent common ancestor at

time t̄, the covariance between their trait values is σ2t̄, reflecting the length of their shared

path on the phylogeny multiplied by the evolutionary rate (Freckleton et al., 2002). As a

result, y ∼ N (α · ı, σ2 · V), where the phylogenetic variance-covariance matrix V has a
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Figure 4: A simple tree and the corresponding phylogenetic covariance matrix under BM.

special structure: its diagonal elements are all equal to t, the length of the full path from

root to tip for each society, while its off-diagonal elements are equal to the shared path

lengths for corresponding society pairs (Harmon, 2019).

For illustration, consider the simple phylogenetic tree shown in figure 4, which repre-

sents ancestral relationships between four societies. Each branch of this tree is labeled with

its estimated length. To compute the off-diagonal elements of the V matrix for this tree

under the BM process, we find the lengths of the shared evolutionary paths between each

pair of societies. In our example, societies 1 and 2 are the closest relatives and share the

longest common path consisting of two branches with a total length of t6 + t5. Society 3 is

more distantly related to 1 and 2, sharing only one branch of length t6 with both. Society

4 evolved completely independently from the others, resulting in zero off-diagonal elements

in the fourth row and column of V. Since the tree is ultrametric, the diagonal elements of

V are all equal to t4, the total tree height. The covariance matrix C for the vector of trait

values is then obtained by multiplying V by the evolutionary rate σ2.

The core idea behind the BM process is that evolutionary change occurs due to numer-

ous small, random forces. However, it is incorrect to equate BM with the neutral model of

evolution. As shown in the evolutionary biology literature, the BM process aligns not only

with the simplest case of pure genetic drift but also with various models of adaptive evo-

lution that involve selection (Hansen and Martins, 1996; Harmon, 2019). The popularity

of the BM model stems from its simplicity, convenient statistical properties, and its ability

to adequately capture trait evolution across a broad range of scenarios, including adaptive

evolution. Generally, the BM model is best viewed as describing the distribution of trait

changes rather than any specific mechanism producing these changes (Nunn, 2011).
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Figure 5: Pagel’s λ and rescaled phylogenetic trees.

4.2 Phylogenetic signal tests: Pagel’s λ and the D statistic

Pagel’s λ is one of the most commonly used tests for detecting phylogenetic signal in con-

tinuous traits (Pagel, 1999). It measures the extent to which the observed distribution

of trait values is consistent with the outcome of a BM evolutionary process on a given

phylogeny. Formally, λ is defined as a multiplier of the off-diagonal elements of the phy-

logenetic covariance matrix V, typically constrained between 0 and 1 (Freckleton et al.,

2002). A value of λ = 0 corresponds to complete phylogenetic independence, while λ = 1

indicates an evolutionary process identical to BM. Intermediate values of λ reflect weaker

phylogenetic signal compared to BM.

Pagel’s λ can be interpreted as a scaling factor for a phylogenetic tree. Specifically,

all internal branches are shortened by a factor of λ, while terminal branches are extended

accordingly, as illustrated in figure 5 for the simple tree introduced earlier and shown again

on the left panel. The middle panel corresponds to the case of λ = 0.5, where all internal

branches are halved in length, shortening the shared evolutionary paths of societies 1, 2,

and 3 and allowing for a longer period of independent evolution on terminal branches. This

reduces phylogenetic dependence and increases the likelihood of greater divergence in trait

values. The right panel illustrates the extreme case of λ = 0, where all branches become

terminal, collapsing the original tree into a star phylogeny. In this scenario, societies evolve

completely independently from each other, and phylogenetic signal is absent.

Under BM on a rescaled tree, the vector of trait values y ∼ N (α · ı, σ2 ·V(λ)), where

V(λ) is the original phylogenetic covariance matrix V with off-diagonal elements multi-

plied by λ. Given observed trait values at the tips and a phylogeny, λ can be estimated

using a maximum likelihood approach (Freckleton et al., 2002). Standard likelihood ratio

tests can then be applied to evaluate relevant hypotheses such as complete phylogenetic
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independence (λ = 0) or whether the signal strength is consistent with a BM process on

the original, unscaled tree (λ = 1).6

Pagel’s λ, based on a BM process for continuous traits, is not well-suited for evaluating

phylogenetic signal in binary traits. In this case, the most commonly employed test is the

D statistic of Fritz and Purvis (2010).

The D statistic is based on the standardized sum of differences in trait values between

sister clades for a given phylogeny. The term “sister clades” refers to any two societies or

groups of societies that diverge from the same tree node. For two sister societies, a simple

difference in the respective tip values is calculated. In cases involving clades, nodal values

are first estimated as the weighted means of descendant node or tip values, with weights

inversely proportional to the branch lengths leading to them. The difference between these

nodal values represents the sister-clade difference. Intuitively, the sum of all sister-clade

differences in a tree will be smaller for traits that show strong phylogenetic dependence

compared to traits that are more randomly distributed across the phylogeny. However,

this sum depends on both the trait’s prevalence and the size and shape of the phylogeny.

To make phylogenetic signal measures comparable across datasets, the sum of sister-

clade differences is standardized using two reference points, namely the expected sums

for phylogenetically random traits and for traits evolving under a BM threshold model.

The former is estimated by repeatedly randomly shuffling observed trait values at the tree

tips, whereas the latter is estimated by simulating continuous traits evolving under BM

on the given phylogeny. For each simulation, a simple threshold model is applied, where

societies with trait values above a chosen threshold are assigned a score of 1, and those

below are assigned a score of 0. The threshold is selected to match the observed binary

trait prevalence in the actual data. The sums of sister-clade differences are then calculated

for the simulated binary traits, and their mean serves as the reference point under the BM

threshold model.

The D statistic is calculated as D = (S − S̄BM)/(S̄R − S̄BM), where S is the observed

sum of sister-clade differences and S̄R and S̄BM are the reference averages from random

reshuffling and BM threshold model simulations, respectively. With this standardization,

D = 1 corresponds to phylogenetic independence, while D = 0 indicates that trait values

are phylogenetically related exactly as predicted by the BM threshold model of evolution.

Values between 0 and 1 reflect an intermediate level of phylogenetic signal below the BM

benchmark. Unlike Pagel’s λ, D values may fall outside the [0, 1] interval, with negative

6Functions for estimating λ and testing these hypotheses in a maximum likelihood framework are
available in R packages like phylosignal and phylotools.
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values indicating stronger phylogenetic dependence than expected under BM, and values

above 1 corresponding to overdispersion (when closely related societies show greater trait

divergence that expected by chance). The statistical significance of the difference between

the observed D value and the benchmark cases of 1 and 0 can be assessed via a random-

ization test by comparing D to the simulated reference distributions.7

4.3 Detecting phylogenetic signal in the ethnographic data

We conducted phylogenetic signal tests on a selected set of variables from the EA, focusing

on characteristics with relatively few missing observations that have been commonly used

in the economics literature. We categorized these variables into three broad groups: basic

economy and social organization, institutions, and culture.8 From a broader perspective,

these features may all be considered as evolving cultural traits.

The first category includes four subsistence production variables: reliance on agricul-

ture, reliance on gathering, the practice of intensive agriculture, and plow use. The so-

cial organization variables are class stratification and the degree of settlement complexity

(sedentism). Following common empirical approaches, we treat reliance on agriculture,

reliance on gathering, and settlement complexity as continuous variables, and the others

as binary. The second category covers four societal characteristics often regarded as in-

stitutions in the economics literature: indigenous slavery, local democracy, partible land

inheritance, and an index of state centralization. The latter is measured by the number of

jurisdictional hierarchy levels beyond the local community and is treated as a continuous

variable. The third category consists of four binary cultural traits, namely bride price,

polygamy, belief in moralizing high gods, and matrilineal descent, along with a continuous

kinship tightness index developed by Enke (2019).

To account for phylogenetic uncertainty, we performed signal tests across the 902 avail-

able global language trees, as described in section 3. Along with summary statistics for the

tree sample, we also report results based on the MCC summary tree. For each variable,

we use all non-missing observations and prune the language trees accordingly.

Our findings, detailed in table 1, indicate that all examined characteristics exhibit some

degree of phylogenetic dependence. The mean D statistic values for binary traits range

from 0.21 to 0.72. Formal randomization tests reject the null hypothesis of phylogenetic

independence at the 1% significance level across all trees and variables, with a single

7A function for estimating D and testing relevant hypotheses is available in the caper package for R.
The baseline number of permutations is 1,000, as recommended in Fritz and Purvis (2010).

8See appendix A for detailed definitions of all variables used in our analysis.
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Table 1: Phylogenetic signal in the Ethnographic Atlas.

D statistic Pagel’s λ

Variable Mean St.dev. IQR MCC Mean St.dev. IQR MCC N

Basic economy

Intensive agriculture 0.42 0.01 0.01 0.41 1089
Plow use 0.21 0.01 0.01 0.19 1084
Class stratification 0.58 0.01 0.01 0.57 1013
Reliance on agriculture 0.95 0.01 0.01 0.94 1183
Reliance on gathering 0.94 0.01 0.02 0.92 1183
Settlement complexity 0.95 0.01 0.02 0.92 1088

Institutions

Indigenous slavery 0.33 0.01 0.01 0.32 1027
Local democracy 0.72 0.01 0.01 0.71 853
Partible land inheritance 0.65 0.01 0.01 0.65 762
Jurisdictional hierarchy 0.93 0.02 0.02 0.87 1058

Culture

Bride price 0.37 0.01 0.01 0.36 1168
Polygamy 0.41 0.01 0.01 0.40 1154
High gods 0.33 0.01 0.02 0.32 704
Matrilineal descent 0.45 0.01 0.02 0.42 1169
Kinship tightness 0.93 0.01 0.02 0.90 1184

Notes. The mean, standard deviation, and interquartile range (IQR) values are based on the estimates for
902 language trees. D statistic and Pagel’s λ are computed for binary and continuous traits, respectively.
MCC columns report estimates for the maximum clade credibility summary tree. In each test, the null
hypothesis of phylogenetic independence is rejected at least at the 5% significance level.

exception.9 For continuous traits, the mean values of Pagel’s λ are all above 0.9, indicating

a strong phylogenetic signal. Formal likelihood-ratio tests reject the null of phylogenetic

independence at the 1% significance level for every language tree.

The variation in test statistics across trees is generally low, with both standard devia-

tions and interquartile range values around 0.01 to 0.02. The signal measures for the MCC

summary tree are similar to the averages across the 902 trees, with the largest discrepancy

observed for the jurisdictional hierarchy variable. In this case, formal tests again reject the

null of phylogenetic independence. We also tested signal strength relative to BM bench-

marks, and the null hypothesis was rejected across the board, indicating a weaker signal

than implied by the BM process.

9Specifically, for the plow use variable, this null hypothesis is rejected for 99% of the trees at the 5%
significance level but only for 2% of the trees at the 1% significance level.
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We tested the robustness of our results by sequentially excluding the three largest

language families from our sample. While the test statistics varied somewhat in the re-

duced samples compared to the baseline, the discrepancies were not substantial, and our

qualitative results remained unchanged.

Overall, our analysis reveals a phylogenetic signal across all considered economic, in-

stitutional, and cultural characteristics of societies in the EA rejecting the hypothesis of

phylogenetic independence. In other words, societies that are more closely related through

shared ancestry tend to have more similar trait values across multiple domains. This

constitutes prima facie evidence of the non-independence of observations in the EA and

motivates the use of PCMs in cross-cultural analyses using this dataset.

5 Phylogenetic dependence in regression analysis

5.1 The phylogenetic regression

The linear regression model continues to be a workhorse tool in many cross-cultural analyses

that explore the relationships between two or more characteristics of interest. The standard

textbook version of this model, in matrix notation, is as follows:

y = Xβ + ε,

where y is an n × 1 vector of values for the dependent variable, X is an n × k matrix

containing the values of k independent variables, β is a k × 1 vector of coefficients, and

ε is an n × 1 vector of error terms. Throughout the paper, we maintain the exogeneity

assumption E[ε|X] = 0. Although this assumption is likely to be violated in many cross-

cultural estimation settings, our goal is to focus exclusively on the issue of phylogenetic

dependence.

The simplest homoskedastic linear regression model further assumes that the covari-

ance matrix of the error terms is V[ε|X] = σ2I. This corresponds to an i.i.d. sampling

framework, where the error terms are uncorrelated across observations and the off-diagonal

elements of the covariance matrix are zero. In this setting, the Gauss-Markov theorem

states that the OLS estimator β̂ = (X′X)−1X′y is efficient, meaning it has the smallest

covariance matrix (in the positive semidefinite sense), equal to σ2(X′X)−1, in the class of

linear unbiased estimators.

When observations represent societies, such as ethnolinguistic groups, the i.i.d. as-

sumption is violated in particular due to the shared ancestry of all human populations
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around the globe. In this case, the covariance matrix of ε is not diagonal, and while the

OLS estimator remains unbiased, it is no longer efficient. Furthermore, the basic standard

errors associated with β̂ are biased, resulting in erroneous statistical inference.

A regression analysis that accounts for phylogenetic dependence starts with a more gen-

eral assumption that V[ε|X] = C, where the off-diagonal elements of C reflect the expected

similarity between societies, given our knowledge of their evolutionary history. Economists

working with cross-cultural data typically address this issue by calculating clustered stan-

dard errors, where clusters are defined based on spatial or language family classifications.

While the OLS estimator remains inefficient in this case, hypothesis testing regarding β

is valid if the assumed clustering structure accurately captures the true covariance matrix

C. Other limitations of this approach have been discussed in section 2.

Evolutionary biologists, who face a similar issue in the context of cross-species analyses,

have developed an alternative approach that relies on specifying the C matrix based on

the estimated evolutionary relationships between species, captured by phylogenetic trees

and an assumed process of evolution. If C is correctly specified, the generalized least

squares (GLS) estimator β̃ = (X′C−1X)−1X′C−1y is efficient, with the covariance matrix

equal to (X′C−1X)−1. Since C is intended to represent phylogenetic dependence between

observations, the corresponding linear model is called phylogenetic regression, and β̃ is

referred to as the phylogenetic generalized least squares (PGLS) estimator (Grafen, 1989;

Martins and Hansen, 1997; Revell, 2010). Intuitively, whereas in a standard OLS regression

each observation contributes equally to the estimation process, PGLS weights observations

based on their phylogenetic relatedness (Symonds and Blomberg, 2014). Closely related

species are downweighted as “pseudoreplicates,” while those that are more phylogenetically

distinct are upweighted because they provide more independent bits of information.

The “canonical” version of the phylogenetic regression model assumes that the error

terms result from a BM process with zero mean and an evolutionary rate σ2 on a given

phylogenetic tree. Under this assumption, ε ∼ N (0,C), where C = σ2 · V, and the

phylogenetic covariance matrix V has a well-known structure. Specifically, as described in

section 4, each off-diagonal element of V is equal to the length of the evolutionary path

shared by respective pair of societies (the height of their MRCA), and for an ultrametric

tree, each diagonal element is simply equal to the total tree height.10 Thus, V is easily

constructed from the given phylogeny, and, because C = σ2 · V, the PGLS estimator is

expressed as β̃ = (X′V−1X)−1X′V−1y, with V[β̃|X] = σ2 · (X′V−1X)−1. An unbiased

10In this case, the standard phylogenetic regression has homoskedastic error terms.
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estimate for σ2 can be obtained in the standard way using regression residuals: σ̃2 =

(y −Xβ̃)′V−1(y −Xβ̃)/(n− k).

Although the PGLS estimator is unbiased for any choice of C, its relative efficiency

and the validity of hypothesis testing rely on the accurate specification of the covariance

matrix. One potential concern is errors in the phylogeny. Reassuringly, simulations and

analytic studies have shown that phylogenetic regression, and PCMs more generally, are

fairly robust to local perturbations in tree specifications, including errors in both branch

lengths and tree topology (Symonds, 2002; Martins and Housworth, 2002; Stone, 2011).

More importantly, in our analysis, we use the entire sample of likely language phylogenies

from Bouckaert et al. (2022) and directly explore the sensitivity of our results to tree

estimates.

Another possible source of misspecification is the choice of the underlying evolutionary

process. While BM is a versatile model consistent with various evolutionary scenarios, it

is unlikely to precisely capture the past dynamics of ε. However, if a strong case can be

made for a specific evolutionary process, the corresponding C matrix can then be derived

and used in the PGLS estimation framework. Indeed, implementations of phylogenetic

regression under popular alternative models of evolution, including time-varying BM or the

Ornstein-Uhlenbeck process, are readily available (Symonds and Blomberg, 2014; Revell

and Harmon, 2022).

More commonly, instead of taking a strong stance on a specific evolutionary model,

researchers employ a flexible setup that allows them to estimate one or more parameters

of the evolutionary process from the available data. The most popular example of such

an approach is to adjust the covariance matrix in the canonical BM case using Pagel’s

λ, which was introduced in section 4. Specifically, the off-diagonal elements of V are

multiplied by a factor λ ∈ [0, 1], which serves as an additional parameter of the model that

captures the strength of phylogenetic signal in the error term. The coefficients of interest,

β, and Pagel’s λ are then jointly estimated, and the appropriate level of phylogenetic

correction is dictated by the data (Revell, 2010). This approach offers substantial flexibility

by accommodating the extreme cases of complete phylogenetic independence (λ = 0) and

canonical BM (λ = 1), as well as intermediate levels of phylogenetic signal.11 Note that

for λ = 0, the PGLS estimator coincides with basic homoskedastic OLS.

Simulation studies have shown that simple BM-based phylogenetic regression performs

reasonably well, in terms of type I error rates, under a variety of alternative evolutionary

11It is the degree of phylogenetic signal in the error term, rather than in the dependent or independent
variables, that ultimately justifies the application of phylogenetic regression (Revell, 2010).
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models (Dı́az-Uriarte and Garland, 1996; Martins et al., 2002). Even when deviations from

the BM are severe, such as in complex heterogeneous models of evolution, simple PGLS

with Pagel’s λ significantly outperforms the standard OLS approach. Intuitively, while BM

may not correspond precisely to the evolutionary process for ε, it still captures the funda-

mental idea that societies that diverged from one another relatively recently are expected

to be more similar, a property that is consistent with many alternative evolutionary mod-

els. Thus, even imperfect accounting for phylogenetic dependence via a BM-based model

is better than none.

5.2 OLS vs. PGLS: A simulation study on language supertrees

The advantages of phylogenetic regression over standard OLS estimation methods in the

presence of phylogenetic dependence have been well-established in the evolutionary biol-

ogy literature (Nunn, 2011). We complement earlier studies by conducting a simulation

exercise specific to cultural evolution on language supertrees for a sample of EA societies

and comparing the performance of phylogenetic regression to common strategies in the

economics literature.

Our setting is based on the simulation study by Revell (2010) that explores the impli-

cations of ignoring phylogenetic structure in regression analysis. The author considers a

simple bivariate regression model and several types of data-generating processes that vary

based on the presence of phylogenetic signal in the independent variable and the error

term. To produce phylogenetically dependent data, he simulates a simple BM process on

1,000 stochastic pure-birth phylogenetic trees, all of the same height and each containing

100 tips. Consistent with basic theory, simulations show that, in scenarios with phylo-

genetic signal present in the error term, PGLS is more efficient than OLS and produces

estimates that are closer to the true value of the slope coefficient in the vast majority of

runs. Furthermore, OLS yields highly inflated type I error rates.

We focus on a model where both X and ε exhibit phylogenetic signal. Specifically,

these variables are generated by simulating two independent BM processes with zero mean

and σ2 = 1 occurring on the global phylogenies of languages from Bouckaert et al. (2022).

We use the entire sample of 902 trees and perform 100 simulations per tree, resulting in

a total of 90,200 runs for each model specification. The trees are pruned to our baseline

sample of 1,184 languages corresponding to EA societies, as described in section 3. The

outcome variable is assumed to be independent of X and is generated as y = X · 0 + ε.

For each simulated dataset, we compare the performance of OLS and PGLS (with Pagel’s
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λ adjustment) in estimating the slope coefficient and testing the basic hypothesis that it

is equal to zero at the 5% significance level.12

Unlike Revell (2010), we evaluate the properties of phylogenetic regression in relation

not only to basic homoskedastic OLS but also to estimation strategies that incorporate

clustered standard errors and various fixed effects. In both cases, we consider four types

of groupings used in the literature to capture, directly or indirectly, the role of common

ancestry. The first two categories are continent and country. EA societies in our sample

fall into 148 modern countries across six continents (Africa, Asia, Europe, North America,

Oceania, and South America). The other two categories reflect cultural affinity based on

primary language families. In addition to the modern Glottolog classification, described in

section 3, we also consider the language groupings available from the EA. Despite being

outdated, this classification is commonly used by researchers due to its immediate avail-

ability in the EA. According to the original groupings in the EA, languages in our baseline

sample correspond to 67 primary families and 41 isolates.13 This is in contrast to 126 pri-

mary language families and 23 isolates according to Glottolog. In what follows, we refer to

these two alternative groupings as MLF and GLF, which stand for Glottolog and Murdock

language family classifications, respectively.

Table 2 summarizes the main simulation results. The first two columns of the table

show the averages and variances of the coefficient estimates across simulations for different

model specifications. As expected, although the distributions of OLS (panel A) and PGLS

(panel B) estimates are both centered around the true value of 0, the variance is much

smaller under PGLS. In the baseline bivariate case, the variance of the OLS estimates

is more than 200 times greater than that of PGLS. Including fixed effects in the OLS

estimation improves precision, with the lowest variance achieved in a specification that

accounts for Glottolog language families. But even in this case it remains over 16 times

greater than for the bivariate PGLS specification. As shown in panel B, fixed effects have

only a minor impact on the dispersion of PGLS estimates.

Figure 6 illustrates the dramatic improvement in precision achieved by phylogenetic

regression compared to standard OLS. Panel (a) shows that the distribution of estimates

is the tightest under bivariate PGLS, even though the variance of OLS estimates decreases

with the incorporation of fixed effects. Panel (b) shows that the simplest bivariate PGLS

12We used the following R packages in this analysis: fixest for OLS estimation, phytools for BM
simulation, and phylolm for PGLS estimation. Following Revell (2010), we also assessed statistical power
by simulating the model with the true slope coefficient set to 1. Both OLS and PGLS showed good power
across scenarios, and we omit a detailed presentation of these results.

13The original language family coding in the EA contains over 60 missing values. We use up-to-date
information to assign respective languages to one of the EA families or designate them as isolates.
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Table 2: OLS vs. PGLS: Summary of simulation results

Coefficient estimates Type I error rate by clustering category

Model specification Mean Variance None Continent Country MLF GLF

A. OLS

Bivariate 1.30× 10−3 1.80× 10−1 0.89 0.37 0.69 0.44 0.44
Continent FE 1.48× 10−3 1.18× 10−1 0.87 0.32 0.63 0.41 0.40
Country FE 1.27× 10−3 8.89× 10−2 0.83 0.47 0.28 0.39 0.41
MLF FE 1.20× 10−3 7.43× 10−2 0.82 0.42 0.45 0.32 0.31
GLF FE 1.82× 10−4 1.41× 10−2 0.60 0.24 0.30 0.21 0.23

B. PGLS

Bivariate −1.07× 10−6 8.51× 10−4 0.05
Continent FE 2.43× 10−6 8.55× 10−4 0.05
Country FE 2.30× 10−4 9.59× 10−4 0.05
MLF FE 1.16× 10−4 9.25× 10−4 0.05
GLF FE 1.22× 10−4 9.63× 10−4 0.05

Notes: Panels A and B present results from OLS and PGLS estimation frameworks, respectively. MLF
and GLF stand for Murdock and Glottolog language family classifications, respectively. Each reported
statistic is based on 90,200 simulations of the corresponding model.

regression yields coefficient estimates that are closer to the true value of 0 in the vast

majority of simulations. Specifically, PGLS is more precise than bivariate OLS in over

95% of simulations, while the best-performing OLS specification (with GLF fixed effects)

is more precise in only about 16% of runs.

The right side of table 2 presents type I error rates associated with the null hypothesis

that the slope coefficient is equal to zero. As expected, simple homoskedastic OLS yields

highly inflated type I error rates, with nearly 90% of false positives in the bivariate regres-

sion case. While clustering standard errors helps mitigate this problem, the rates of false

positives remain unacceptably high, with the lowest at 37% when clustering by continent.

Adding most fixed effects to the homoskedastic OLS specification only marginally reduces

the type I error rate, although accounting for Glottolog language families brings it down to

60%.14 The table also presents the rates for various combinations of fixed effects and clus-

tering categories. Overall, employing both strategies simultaneously further reduces false

positives, with the best performance observed when clustering is used alongside GLF fixed

effects. Still, even a 21% type I error rate is significantly higher than the nominal 5% level

maintained across PGLS specifications. Figure C.1 in appendix C shows the distributions

of p-values across simulations for a subset of estimation approaches.

14This result parallels the finding that, generally, regional fixed effects cannot properly account for
spatial dependence, except under very special circumstances (Anselin and Arribas-Bel, 2013).
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Figure 6: Evaluating the relative precision of PGLS estimates.

Notes: Panel (a) displays kernel density plots for the distributions of coefficient estimates, based on 90,200
simulations per model specification. Density values for PGLS estimates are measured on a separate vertical
axis for visual clarity. Panel (b) shows the fractions of simulations where the estimated coefficient was closer
to its true value of zero under PGLS and OLS. Here, PGLS always refers to the bivariate specification,
while column labels refer to respective OLS specifications.

Given that phylogenetic and spatial distance tend to be positively correlated, we also

computed standard errors adjusted for spatial autocorrelation using the method of Conley

(1999) for different distance cutoff values between 200 and 1,500 kilometers. Table C.1

in appendix C shows that while the Conley adjustment reduces the type I error rate –

especially with larger distance cutoff values – it remains severely elevated compared to

the nominal 5% rate. The specification with GLF fixed effects continues to have the best

performance, yielding 23-24% of false positives under the largest cutoff values.

6 PGLS in action: Revisiting published results

6.1 Study sample and approach to reanalysis

Informed by the insights from our simulation exercise, we now turn to the application of

phylogenetic regression in a reanalysis of cross-cultural patterns in real data. We focus on

10 papers, published in leading economics journals between 2013 and 2024, that use EA

data to estimate society-level relationships. The research question is different in each of
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these papers and we do not intend to reevaluate any particular theory. Rather, our main

goal is to see how the estimation results change in a phylogenetic regression framework

and pinpoint any common patterns that emerge when accounting for non-independence of

observations due to shared ancestry.

Importantly, we only look at a subset of estimates presented in each paper, namely

those coming from OLS estimation of society-level regressions, which typically vary based

on included fixed effects, other control variables, and approaches to computing standard

errors. In some papers, these regressions represent the core empirical analysis, while in

others they are merely “motivational” or represent the first line of evidence before turning

to more complex analyses aimed at establishing causality. Our reanalysis is thus not

comprehensive in many cases and should only be viewed with reference to basic OLS

results.15 We do not have strong priors regarding the impact of our reanalysis, and PGLS

may in theory reveal patterns that are weaker, stronger, or unchanged relative to baseline

OLS.

Overall, our analysis covers 28 regression models, 12 of which are based on global sam-

ples of EA societies, while the remaining 16 focus solely on Africa. In each case, we rely

on publicly available replication data and ensure the consistency of original findings by

replicating baseline OLS estimates before comparing them to PGLS results. Table 3 pro-

vides a summary of each model specification in our reanalysis. For easy identification of

the original results, we reference the corresponding table and column numbers from pub-

lished papers. We next list the dependent and main independent variables and provide

the number of controls used, not counting any spatial or language family fixed effects.16

The number and type of such controls differ significantly across models. In a substantial

number of cases, dependent variables are binary in nature. We follow the original studies

and estimate linear probability models for consistency and ease of comparison.17 It should

be noted, however, that specialized methods designed for modeling binary outcomes, such

as phylogenetic logistic regression, are also readily available (Ives and Garland, 2010; Ger-

shman and Mumladze, 2024).18

In a separate column, we report categories of fixed effects employed by the authors

to account for unobserved heterogeneity. Many studies employ basic spatial units, such

15Incorporating phylogenetic adjustment in more sophisticated settings such as instrumental-variables
regressions is a fruitful direction for future research.

16See appendix A for detailed definitions of all variables in table 3.
17One exception is the second model from Fenske (2014) which is originally estimated using ordered

probit. We proceed with the OLS estimation after confirming that it yields a qualitatively similar result.
18Simulations have shown that PGLS performs reasonably well with binary response variables in large

samples (Mundry, 2014).
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as continent and country, though precise classifications vary slightly across papers. To

capture cultural and linguistic affinity, some studies incorporate fixed effects representing

language groupings from the EA. These include, in order or increasing granularity, lan-

guage continents, families, subfamilies, and cultural provinces. We also report the authors’

approaches to computing standard errors, which include heteroskedasticity-robust estima-

tion, clustering by geographic or language group, and the Conley (1999) correction for

spatial correlation.

The remaining columns of table 3 describe the baseline result, in terms of sign and

statistical significance of the main coefficient, and provide the sizes of both the original

sample and the subsample used in our reanalysis. The loss of observations results from an

imperfect matching of EA societies to language trees, as explained in section 3. We typically

lose 5% to 10% of observations in global samples and fewer than 5% in specifications

focusing on Africa. In each case, we verify that the baseline OLS result remains intact in the

reduced sample, that is, the coefficient sign and statistical (in)significance are preserved,

and its magnitude is within 20% of the original estimate. Baseline OLS results are all

statistically significant at least at the 10% level, with 3 exceptions.

Similar to our simulation exercise, we examine a range of model specifications and clus-

tering strategies for each regression. We start with a simple bivariate case followed by

the “baseline” specification incorporating all control variables (not counting fixed effects),

which differ by study and sometimes also by model within a study. Next, we introduce

spatial fixed effects represented by continents for global samples and countries for Africa.

Finally, we estimate specifications with language family fixed effects using the MLF clas-

sification.19 Our definitions for all fixed effects are identical to those used in section 5.

Each model specification is estimated using OLS and PGLS. In the OLS case, we present

point estimates and statistical significance levels based on three types of standard errors:

heteroskedasticity-robust, clustered by spatial unit and by language family. Appendix D

additionally reports significance levels for standard errors adjusted for spatial correlation

using different distance cutoffs. For each model from table 3, at least one set of reported

estimation results is identical or very close to those in the original study.20 When ap-

plying phylogenetic regression, we produce PGLS estimates for each of the available 902

global language trees. We then report the interquartile range (IQR) of PGLS estimates

19Some studies using the language family classification from the EA treat all language isolates as belong-
ing to one category. Instead, we treat them as singleton groups, a more conceptually justified approach.
Estimation results with GLF fixed effects are similar to those obtained using MLF classification.

20For example, while we do not report significance levels associated with clustering by cultural province
(Alsan, 2015), using MLF as clustering category yields very similar results.
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Table 3: Summary of models used in the reanalysis

Model
Table

(column)
Dependent
variable

Independ.
variable

Num. of
controls

Fixed
effects

Standard
errors

OLS
estimate

Sample
size

Subsample
size

Global samples

Alesina et al. (2013)

1 1(1)
Female part.
in agricult.

Plow use 5 None Conley
Positive

1%
660 625

Becker (2024)

1 1(2)
Patrilocal
residence

Depend. on
pastoralism

0 Continent Robust
Positive

1%
1167 1072

2 1(4)
Insist. on
virginity

—"— 0 —"— —"—
Positive

5%
592 538

3 A1(1)
Women
as sexual

—"— 2 —"— —"—
Negative
> 10%

1124 1034

Bentzen and Gokmen (2023)

1 1A(6) High gods
Class
stratif.

4
Language
family

Language
family

Positive
1%

666 600

2 1B(6) High gods
Irrigation
potential

4 —"— —"—
Positive
10%

560 529

Enke (2019)

1 3-3
Kinship
tightness

Malaria
ecology

2 Continent
Language
subfamily

Positive
5%

1216 1107

2 4(4-5) High gods
Kinship
tightness

3
Continent/
country

—"—
Negative

1%
770 694

3 4(9) Purity —"— 2 Continent —"—
Positive

5%
371 335

4 4(14-15)
Jurisd.

hierarchy
—"— 2

Continent/
country

—"—
Positive

1%
1141 1039

Fenske (2013)

1 2(8)
Log pop.
density

Land
quality

11
Language
continent

Conley
Positive

1%
1205 1105

Mayshar et al. (2022)

1 1(1)
Jurisd.

hierarchy
Reliance
on cereals

0 Continent
Country/
Conley

Positive
1%

952 870

African samples

Alsan (2015)

1 1(4)
Large
animals

TseTse
suitability

11 None
Cultural
province

Negative
1%

484 477

2 1(4)
Intensive
agriculture

—"— 11 —"— —"—
Negative

1%
485 478

3 1(4)
Log pop.
density

—"— 11 —"— —"—
Negative

1%
398 390

4 1(4)
Indigenous
slavery

—"— 11 —"— —"—
Positive

5%
446 440

5 1(4)
State
central.

—"— 11 —"— —"—
Negative

5%
467 460

31



Model
Table

(column)
Dependent
variable

Independ.
variable

Num. of
controls

Fixed
effects

Standard
errors

OLS
estimate

Sample
size

Subsample
size

Depetris-Chauvin and Weil (2018)

1 2(6)
Log pop.
density

Malaria
burden

9
Cultural
province

Robust
Positive

1%
398 390

2 3(3)
State
central.

—"— 9 —"— —"—
Positive
> 10%

520 512

3 3(4)
Intensive
agriculture

—"— 9 —"— —"—
Negative
> 10%

520 512

Enke (2019)

1 3(10)
Kinship
tightness

Malaria
ecology

3 None
Language
subfamily

Positive
5%

500 494

2 3(10)
Kinship
tightness

TseTse
suitability

3 —"— —"—
Positive

1%
500 494

Fenske (2013)

1 2(6)
Indigenous
slavery

Land
quality

11
Language
continent

Conley
Positive

1%
416 409

2 2(9)
Log pop.
density

—"— 11 —"— —"—
Positive
10%

486 477

Fenske (2014)

1 3(1)
Jurisd.

hierarchy
Ecological
diversity

16 None UN region
Positive

5%
440 432

2 5(2)
Class
stratif.

—"— 16 —"— —"—
Positive

1%
364 358

Moscona et al. (2020)

1 2A(3)
Conflict
incidents

Segmentary
lineage

11 Country Robust
Positive

1%
141 137

2 A4A(3)
Conflict
incidents

—"— 11 —"— —"—
Positive

5%
458 433

Notes: The first column numbers the models within each paper. This numbering is used in figures 7, 8,
10, and 11. In the column reporting the type of standard errors in original studies, “Robust” refers to
heteroskedasticity-robust estimates, “Conley” refers to estimates adjusted for spatial correlation (Conley,
1999), and other items correspond to clustering categories (country, language family, language subfamily,
cultural province, UN region). The last two columns report the sample size in the original study and in the
reanalysis, respectively. The difference in sample sizes is due to the loss of observations in the process of
matching EA societies to global language trees. The ditto mark (—"—) means repetition of the previous
value in the same column.

for each specification, directly accounting for phylogenetic uncertainty in our analysis. We

also provide the corresponding IQRs for estimated strength of phylogenetic signal in the

error terms (Pagel’s λ). All coefficient estimates are standardized for visual clarity and

comparability across models.
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6.2 Summary of results

Figure 7 presents a summary of point estimates from models using global samples of EA

societies. For each specification, the OLS estimate is marked with an × symbol, the IQR of

PGLS estimates is represented by a black box plot, and the IQR for λ is depicted as a solid

red segment. Figure 8 provides a summary of corresponding statistical significance levels,

which are categorized into four groups: 1%, 5%, 10%, and greater than 10%. For OLS esti-

mates, significance levels are reported for three versions of standard errors described above

using markers of different shapes. For phylogenetic regressions, we show the histograms

of p-values corresponding to PGLS estimates within the reported IQRs and based on the

four significance-level bins.

A common finding across models is the presence of substantial phylogenetic signal in

regression residuals. The estimates of λ are generally higher in the bivariate and baseline

specifications, but often remain substantial even after including fixed effects. Accounting

for language family reduces residual phylogenetic signal the most and sometimes, but not

always, eliminates it altogether.

PGLS typically produces more conservative coefficient estimates that are smaller in

magnitude relative to OLS. As illustrated in panel (a) of figure 9, the differences in co-

efficient magnitudes is positively correlated with the strength of estimated phylogenetic

signal. In these scatterplots, the vertical axis represents the percentage change in the OLS

coefficient relative to the median PGLS estimate, the horizontal axis shows the correspond-

ing values of λ, and each point corresponds to one model from table 3. In bivariate and

baseline specifications, characterized by the highest values of λ, PGLS coefficient estimates

are typically 60-80% smaller than their OLS counterparts, and sometimes the difference is

even larger.

The gap between OLS and PGLS estimates is reduced with the introduction of fixed

effects. In about half of the models with continent fixed effects, PGLS coefficients are 30-

50% smaller than OLS estimates, although reductions of 80% or higher are still observed

in a substantial number of cases. In one model, we identify no phylogenetic signal, and

both estimation approaches yield the same coefficient estimate. When language family

fixed effects are controlled for, phylogenetic signal weakens notably across the board and

is eliminated in 5 out of 12 models, leading to convergence between OLS and PGLS. In

the remaining models, we keep observing moderate to substantial change in the coefficient

estimates.

An important observation is that across different specifications for the same model,

PGLS coefficient estimates remain very stable. In contrast, OLS estimates are much more
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Figure 7: OLS and PGLS point estimates and phylogenetic signal in global samples.

Notes: Model numbers on the left correspond to those in column 1 of table 3. OLS point estimates are
marked with an × symbol, the IQR of PGLS estimates is represented by a black box plot, and the IQR
for λ estimates is depicted as a solid red segment. Baseline specification includes all controls from the
original studies (excluding fixed effects). Continent and MLF specifications add respective fixed effects
to the baseline specification. All coefficient estimates are standardized. In three cases, namely models 1
and 2 from Becker (2024) and model 1 from Mayshar et al. (2022), baseline specifications are identical to
bivariate cases and are omitted.

sensitive to the set of included controls. Furthermore, PGLS estimates are quite robust

to phylogenetic uncertainty, as evident from consistently narrow interquartile ranges of

coefficients. This remains true even in models with notable variability in estimated residual
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Figure 8: Statistical significance of OLS and PGLS estimates in global samples.

Notes: Levels of statistical significance are grouped into four categories: 1%, 5%, 10%, and greater
than 10%. For OLS estimates, significance levels are shown based on three types of standard errors:
heteroskedasticity-robust (circles), clustered by continent (squares) and MLF (triangles). For PGLS, the
figure shows histograms of p-values corresponding to estimates within the IQRs and based on the four
significance-level bins. Baseline specification includes all controls from the original studies (excluding fixed
effects). Continent and MLF specifications add respective fixed effects to the baseline specification. In
three cases, namely models 1 and 2 from Becker (2024) and model 1 from Mayshar et al. (2022), baseline
specifications are identical to bivariate cases and are omitted.

phylogenetic signal. In other words, the differences in global language trees do not convert

into substantial variation in PGLS coefficient estimates.
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Figure 9: Residual phylogenetic signal and the change in coefficient magnitudes.

Notes: Each panel plots the percentage difference between the OLS coefficient and the median PGLS
estimate against the corresponding value of residual phylogenetic signal. Each point corresponds to one
model specification. Negative values indicate cases where PGLS coefficients are larger in magnitude than
OLS. Two outlier cases, in which OLS and PGLS coefficients have different signs, are omitted. Labeled
points reflect the number of models in which OLS and PGLS estimates are identical.

Figure 8 shows that OLS estimates tend to be more statistically significant than their

PGLS counterparts, regardless of the approach to standard errors. Clustering and inclusion

of fixed effects typically reduce the significance of OLS estimates. It appears to be par-

ticularly sensitive to clustering standard errors by continent and controlling for language

family categories. Similar to the case of point estimates, statistical significance of PGLS

coefficients is lower and shows more stability across models compared to OLS. Already in

the bivariate and baseline specifications, about a half of the estimates become statistically

insignificant under PGLS estimation. The OLS and PGLS results are most closely, but

not perfectly aligned in specifications with language family fixed effects. Additionally, the
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rather consistent distribution of p-values across significance-level bins shows once again the

robustness of PGLS estimation to phylogenetic uncertainty.

Figure D.1 in appendix D compares the statistical significance of OLS estimates when

standard errors are adjusted for spatial correlation using different distance cutoff values to

PGLS results. We find that this approach yields p-values that are qualitatively similar to

clustering strategies and frequently different from PGLS-based inference.

Next we revisit the studies focusing on African societies. The setting and visualization

approach is the same as for the global-sample reanalysis above, but following the literature,

we use country rather than continent as a clustering and fixed effect category. The results

are summarized in figures 10, 11, and panel (b) of figure 9.21

Once again, we detect substantial phylogenetic signal in most models, which is per-

sistent across specifications. The differences in OLS and PGLS coefficients are typically

smaller than in the global sample. In roughly one third of bivariate and baseline specifica-

tions, the reduction in coefficient magnitude is between 30% and 60%. Moderate decreases

of 10%-20% are also common, while in some cases the drop in magnitude reaches 80% or

higher.

As in the global sample, inclusion of fixed effects reduces both the measured residual

phylogenetic signal and the gap in coefficient estimates, with country fixed effects being

especially influential. After controlling for language family, the change in the coefficient

magnitude is less than 50% in the vast majority of cases, with roughly half of all models

showing little to no change. In specifications with country fixed effects, the difference

between OLS and PGLS estimates is very small in most cases and non-existent in about

half of all models. Consistent with earlier findings, PGLS coefficients remain stable across

specifications, with narrow interquartile ranges.

The patterns of statistical significance also resemble earlier findings, although the dif-

ferences between OLS and PGLS are somewhat less pronounced. As before, clustering and

fixed effects reduce the statistical significance of OLS coefficients, but the results still do

not fully align with PGLS. Figure D.2 in appendix D shows that adjusting standard errors

for spatial correlation yields conclusions that are qualitatively similar to those obtained

from clustering approaches.

Overall, our reanalysis demonstrates that accounting for non-independence of obser-

vations in a phylogenetic regression setting often leads to a substantial reduction in both

21In several specifications, the PGLS estimation routine did not converge for a small subset of trees not
exceeding 6% of the entire sample. In these cases, all reported results are based on the estimates obtained
from the remaining set of trees.
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Figure 10: OLS and PGLS point estimates and phylogenetic signal in African samples.

Notes: Model numbers on the left correspond to those in column 1 of table 3. OLS point estimates are
marked with an × symbol, the IQR of PGLS estimates is represented by a black box plot, and the IQR
for λ estimates is depicted as a solid red segment. Baseline specification includes all controls from the
original studies (excluding fixed effects). Country and MLF specifications add respective fixed effects to
the baseline specification. All coefficient estimates are standardized.
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Figure 11: Statistical significance of OLS and PGLS estimates in African samples.

Notes: Levels of statistical significance are grouped into four categories: 1%, 5%, 10%, and greater
than 10%. For OLS estimates, significance levels are shown based on three types of standard errors:
heteroskedasticity-robust (circles), clustered by continent (squares) and MLF (triangles). For PGLS, the
figure shows histograms of p-values corresponding to estimates within the IQRs and based on the four
significance-level bins. Baseline specification includes all controls from the original studies (excluding fixed
effects). Country and MLF specifications add respective fixed effects to the baseline specification.
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estimated coefficient magnitudes and their statistical significance. Furthermore, PGLS

estimates are stable across model specifications and robust to phylogenetic uncertainty.

7 Concluding remarks

This paper argues that the growing empirical literature in economics, which uses ethnic-

group-level datasets to examine culture, institutions, and long-term development, has not

adequately addressed the issue of non-independence of observations due to shared ances-

try. We propose the adoption of phylogenetic comparative methods, a suite of statistical

techniques designed to deal with this problem. We demonstrate how newly available global

phylogenies of languages facilitate the application of PCMs in large cross-cultural datasets,

with a focus on the widely used Ethnographic Atlas.

Our study reports three key sets of findings. First, phylogenetic signal tests reveal

that various economic, institutional, and cultural characteristics are more similar among

societies with closer ancestral ties, highlighting the non-independence of observations in

the EA. Second, our simulation exercise shows that conventional approaches such as using

clustered standard errors or introducing fixed effects as additional control variables fall

short of fully addressing the problem of phylogenetic correlation. Third, a reanalysis of

previously published results in a phylogenetic regression setting finds that the resulting

estimates often have lower magnitude and weaker statistical significance.

Our matched dataset of EA societies and existing statistical software make phyloge-

netic regression straightforward to apply, and we encourage researchers to include this

robustness check in any cross-cultural analysis. More broadly, adjustment for phylogenetic

non-independence should become standard practice, similar to how spatial correlation is

now routinely accounted for.

This research opens several avenues for future work incorporating PCMs in empirical

economic analysis. In an ongoing project, we explore how phylogenetic regression can be

adapted for different units of observation – such as individuals, ethnic homeland partitions,

or grid cells – commonly used in studies leveraging ethnicity-level variation. Another im-

portant research direction involves developing methods that account for both phylogenetic

and spatial dependence, helping to disentangle their distinct effects. Finally, economists

could benefit from other PCMs, including techniques for modeling trait co-evolution on

phylogenetic trees.
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Appendices

A Definitions of variables

This section defines the variables analyzed throughout the paper. We first list the variables

from sections 3 and 4, followed by those from section 6. Unless otherwise specified, all

variables come from the version of the Ethnographic Atlas available through D-PLACE

(Kirby et al., 2016) at https://d-place.org/contributions/EA. Original D-PLACE

variables are mentioned below with an EA prefix.

Basic economy and social organization

Intensive agriculture. An indicator variable equal to 1, if a society practices: 1) intensive

agriculture on permanent fields, utilizing fertilization, crop rotation, or other techniques so

that fallowing is either unnecessary or is confined to relatively short periods, or 2) intensive

cultivation largely dependent upon irrigation. Corresponds to the original variable EA028

taking values 5 or 6.

Plow use. An indicator variable equal to 1, if animals are used in plow cultivation, whether

this practice is aboriginal or not. Corresponds to the original variable EA039 taking values

2 or 3.

Class stratification. An indicator variable equal to 1 for any type of significant wealth

distinctions and class differentiation. Corresponds to the original variable EA066 taking

values above 1. Fenske (2014) treats it as an ordinal variable with 5 levels of stratification,

which we treat as continuous in our reanalysis of his paper.

Reliance on agriculture. Dependence on agriculture for subsistence. Derived from an

ordinal variable EA005, ranging from 0 (0-5% share) to 9 (86-100% share). We compute

midpoints for each interval and treat the resulting variable as continuous.

Reliance on gathering. Dependence on gathering wild plants and small land fauna for

subsistence. Derived from an ordinal variable EA001, ranging from 0 (0-5% share) to 9

(86-100% share). We compute midpoints for each interval and treat the resulting variable

as continuous.

Settlement complexity. The prevailing type of settlement pattern. The original variable

EA030 is ordinal: 1) fully migratory or nomadic bands, 2) semi-nomadic communities, 3)

semi-sedentary communities, 4) compact but impermanent settlements, 5) neighborhoods
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of dispersed family homesteads, 6) separated hamlets, 7) compact and relatively permanent

settlements, 8) complex settlements. We treat this variable as continuous.

Institutions

Indigenous slavery. An indicator variable equal to 1, if a society had any form of slavery.

Corresponds to the original variable EA070 taking values above 1.

Local democracy. An indicator variable equal to 1, if a society is a traditional local

democracy, that is, political succession (applying to the office of local headman or a close

equivalent) occurs through election or formal/informal consensus. Corresponds to the

original variable EA072 taking values 6 or 7.

Partible land inheritance. An indicator variable equal to 1, if a society practices partible

land inheritance, where land is distributed equally or relatively equally among all members

of the same category. Corresponds to the original variable EA075 taking the value 1.

Jurisdictional hierarchy beyond local community. The number of jurisdictional

levels beyond the local community. The original variable EA033 is ordinal: 1) no political

authority beyond the local community (e.g., autonomous bands or villages), 2) one level

(e.g., petty chiefdoms, 3) two levels (e.g., larger chiefdoms), 4) three levels (e.g., states),

5) four levels (e.g., large, complex states). We treat this variable as continuous.

Culture

Bride price. An indicator variable equal to 1, if bride-price or bride-wealth was the

prevailing type of transfer at marriage. Corresponds to the original variable EA06 taking

the value 1.

Polygamy. An indicator variable equal to 1, if polygyny or polyandry were common or

general in a society. Corresponds to the original variable EA009 taking values above 2.

High gods. An indicator variable equal to 1, if a high god is present and active in human

affairs. Corresponds to the original variable EA034 taking values above 2.

Matrilineal descent. An indicator variable equal to 1, if matrilineal descent was a major

mode of descent. Corresponds to the original variable EA043 taking the value 3.

Kinship tightness. An index describing the extent to which people are interconnected

in tightly structured, extended family systems. Constructed based on several EA variables

describing family structures and descent systems. Source: Enke (2019).

42



Additional variables used in section 6

Conflict incidents. Log transformation of the number of deadly conflict incidents between

1997 and 2014, based on ACLED data. Source: Moscona et al. (2020).

Dependence on pastoralism. Historical reliance on pastoralism (involving herded ani-

mals) for subsistence. Source: Becker (2024).

Ecological diversity. An index of ecological fractionalization, based on vegetation zones.

Source: Fenske (2014).

Female participation in agriculture. An ordinal variable with 5 categories: 1) males

only, 2) males appreciably more, 3) equal participation by males and females, 4) females

appreciably more, 5) females only. Source: Alesina et al. (2013).

Insistence on virginity. An indicator variable equal to 1, if premarital sex relations were

not allowed for unmarried women or allowed but sanctioned if pregnancy results. Source:

Becker (2024).

Irrigation potential. The land area where agriculture is impossible without irrigation as

a share of total arable land. Source: Bentzen and Gokmen (2023).

Land quality. Index of land quality based on climate, soil and terrain slope constraints

on rain-fed agriculture. Source: Fenske (2013).

Large domesticated animals. An indicator variable equal to 1, if the predominant type

of domesticated animals is equines, deer, camelids, or bovines. Source: Alsan (2015).

Log population density. Log of population density based on the EA data. Source:

Alsan (2015), Fenske (2013).

Malaria burden. A measure of malaria burden based on the prevalence of the mutation

that causes sickle cell disease. Source: Depetris-Chauvin and Weil (2018).

Malaria ecology. Average malaria stability index. Source: Enke (2019).

Patrilocal residence. An indicator variable equal to 1, if marital residence is with or

near the male patrilineal kinsmen of the husband. Source: Becker (2024).

Purity. The duration of sexual abstinence following childbirth. An ordinal variable with

6 categories ranging from none to more than two years. Source: Enke (2019).

Reliance on cereals. An indicator variable equal to 1, if cereal grains are the principle

type of cultivated crops. Source: Mayshar et al. (2022).
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Segmentary lineage. Specification in table 2A, column 3, uses a binary index of presence

or absence of segmentary lineage organization based on the Ethnographic Survey of Africa.

Specification in the appendix table 4A, column 3, uses an alternative index of segmentary

lineage organization based on the EA data. Source: Moscona et al. (2020).

State centralization. An indicator variable equal to 1, if there is one or more (Depetris-

Chauvin and Weil, 2018) or two or more (Alsan, 2015) jurisdictional levels beyond the local

community.

TseTse suitability. The average TseTse fly suitability index. Source: Alsan (2015).

Women as sexual. Log of the share of motifs that depict women as sexual among the

total number of motifs in society’s folklore. Source: Becker (2024).
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B Glossary of terms related to phylogenetic trees

The terms explained in this section broadly apply to both phylogenetic and language trees,

with obvious adaptations. We use an example tree in figure B.1 for illustration. See Nunn

(2011) for more details.

2

1

3

4

t1

t2

t3

t4

t5

t6
N1

N2

R

Figure B.1: Example phylogenetic tree.

Phylogeny. The branching evolutionary history of societies, represented as a tree-like

structure. Often used synonymously with “phylogenetic tree.”

Phylogenetic tree. A graphical representation of the branching evolutionary history of

societies, arranged hierarchically to show nested groups that indicate when two or more

societies last shared a common ancestor. A tree consists of nodes connected by branches

and can represent either relative or absolute timing of evolutionary divergence events. The

tree in figure B.1 illustrates ancestral relationships among four societies.

Node. A point on a phylogenetic tree corresponding to a lineage-splitting event. Repre-

sents a present-day society or its ancestor.

Root node (root). The base of a phylogenetic tree, representing the most recent common

ancestor (MRCA) of all societies. In figure B.1, the root is marked with R.

Internal node. A node with at least one descendant. The nodes labeled N1 and N2, as

well as the root R, are internal nodes in figure B.1.

Terminal nodes (tips, leaves). The outermost points of the tree representing current

societies. In figure B.1, tips 1, 2, 3, 4 represent extant societies.

Branch (edge). A line connecting two nodes in a phylogenetic tree. Branches connecting

internal nodes are called internal. Branches connecting internal nodes to tips are called
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terminal. In figure B.1, branches labeled with t1, t2, t3, and t4 are terminal, and those

labeled with t5 and t6 are internal. These labels correspond to branch lengths.

Clade. A part of the tree that includes a group of societies together with their common

ancestor and all of its descendants. For example, in figure B.1, societies 1 and 2, together

with corresponding terminal branches of lengths t1 and t2 and their MRCA N2 form a

clade.

Sister clades. Two societies or clades that diverge from the same tree node.

Node age. The time that has passed since the divergence event that a node represents.

Typically measured relative to the present.

Crown age (tree height). The distance from the root to the most distant tip, represent-

ing the total evolutionary change or time that has passed from the root to the present. In

figure B.1, the crown age of the tree is equal to t4.

Ultrametric tree. A phylogenetic tree where all tips are equidistant from the root. The

tree in figure B.1 is ultrametric.

Time calibrated tree. A phylogenetic tree where branch lengths capture the passage of

time.

Bifurcating tree. A phylogenetic tree where each internal node has one ancestral branch

and two descendant branches. The tree in figure B.1 is bifurcating.

Polytomy. An internal node in a phylogenetic tree from which more than two branches

descend simultaneously. An example of a polytomy is shown in the right panel of figure 2.

Rooted tree. A phylogenetic tree with a single, defined starting point (root). The tree

in B.1 is rooted.

Star phylogeny. A tree in which all lineages diverge simultaneously from the root. In

this tree, there are no internal nodes or branches, indicating that all societies evolved

completely independently.

Pruned tree. A phylogenetic tree with certain branches and nodes removed. Pruning

deletes the tree elements that are not relevant to a particular analysis because of missing

data or sample restrictions, while retaining the original tree structure.
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C Additional simulation results
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Figure C.1: Distributions of p-values for selected estimation strategies.

Notes: The figure displays the distributions of p-values associated with testing the statistical significance
of the slope coefficient in selected model specifications and estimation strategies described in section 5.
Each histogram is based on 90,200 simulations.

Table C.1: Type I error rates in models estimated by OLS with Conley standard errors.

Distance cutoff (in km)

Model specification 200 500 800 1000 1500

Bivariate 0.83 0.73 0.67 0.63 0.58
Continent FE 0.76 0.64 0.58 0.55 0.51
Country FE 0.66 0.50 0.43 0.40 0.36
MLF FE 0.53 0.42 0.38 0.37 0.37
GLF FE 0.40 0.26 0.23 0.23 0.24

Notes: Each rate is based on 90,200 simulations. See section 5 for details of the modeling setup.
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D Additional results from the reanalysis
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Figure D.1: OLS with spatially adjusted standard errors vs PGLS in global samples.

Notes: Levels of statistical significance are grouped into four categories: 1%, 5%, 10%, and greater than
10%. For OLS estimates, significance levels are based on standard errors adjusted for spatial correlation
using the method of Conley (1999) for three distance cutoff values: 200 km (circles), 800 km (squares),
and 1500 km (triangles). For PGLS, the figure shows histograms of p-values corresponding to estimates
within the IQRs and based on the four significance-level bins. Baseline specification includes all controls
from the original studies (excluding fixed effects). Continent and MLF specifications add respective fixed
effects to the baseline specification. In three cases, namely models 1 and 2 from Becker (2024) and model
1 from Mayshar et al. (2022), baseline specifications are identical to bivariate cases and are omitted.
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Figure D.2: OLS with spatially adjusted standard errors vs PGLS in African samples.

Notes: Notes: Levels of statistical significance are grouped into four categories: 1%, 5%, 10%, and
greater than 10%. For OLS estimates, significance levels are based on standard errors adjusted for spatial
correlation using the method of Conley (1999) for three distance cutoff values: 200 km (circles), 800 km
(squares), and 1500 km (triangles). For PGLS, the figure shows histograms of p-values corresponding to
estimates within the IQRs and based on the four significance-level bins. Baseline specification includes
all controls from the original studies (excluding fixed effects). Continent and MLF specifications add
respective fixed effects to the baseline specification.
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